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Considering the simultaneous propagation of multicomponent fields in an isotropic medium, an N-coupled
nonlinear Schrödinger system with the self-phase modulation, cross-phase modulation, and energy exchange
terms is investigated in this paper. First, via symbolic computation, the Painlevé singularity structure analysis
shows that such a system admits the Painlevé property. Then, with the Ablowitz-Kaup-Newell-Segur scheme,
the linear eigenvalue problem �Lax pair� associated with this model is constructed in the frame of the block
matrices. With the Hirota bilinear method, the bright one- and two-soliton solutions of this system are pre-
sented. In addition, the bright multisoliton solutions of the system for N=2 are straightforwardly derived by the
linear superposition of soliton solutions of two independent scalar nonlinear Schrödinger equations. Further-
more, through the analysis for the soliton solutions, the corresponding propagation behavior and applications
for soliton pulses in nonlinear optical fibers are considered. Finally, three significant conserved quantities, i.e.,
energy, momentum, and Hamiltonian, are also given.
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I. INTRODUCTION

Since the theoretical prediction of optical solitons in the
optical fibers by Hasegawa and Tappert in 1973 �1�, along
with the experimental demonstration of the transmission of
envelope soliton in a single mode fiber �2�, the propagation
and application of optical solitons have attracted great inter-
est both in theoretical and experimental studies over the last
three decades �3–8�. Optical solitons are regarded as the
natural data bits and as a promising alternative for the next
generation of ultralong distance and extremely high bit rate
optical telecommunication systems �3,4�. An optical soliton
is known to arise when the group velocity dispersive and
nonlinear effects of the fibers are well balanced. As an im-
portant physical model, the nonlinear Schrödinger �NLS�
equation is used to describe the nonlinear pulse propagation
in the optical fiber for a scalar field. Considering the simul-
taneous propagation of the soliton pulses for multiple fields
with different frequencies or polarizations, the governing
equation becomes the coupled nonlinear Schrödinger
�CNLS� system in the study of soliton wavelength division
multiplexing �9,10�, multichannel bit parallel-wavelength op-
tical fiber network �11�, soliton switch in birefringent optical
fibers �12–15�, propagation and collision of the temporal
vector solitons in birefringent fibers �16�. A CNLS system
was first proposed �17� as

iq1z
+ q1tt

+ 2��q1�2 + �q2�2�q1 = 0,

iq2z
+ q2tt

+ 2��q2�2 + �q1�2�q2 = 0, �1�

which governs the propagation of two fields with left and
right polarizations in an optical fiber. This system possesses

the Painlevé property �18� and its Lax pair has been con-
structed �19�. The soliton collisions with shape change by
intensity redistribution have been discussed based on the
bright multisoliton solutions obtained by using the Hirota
bilinear method �20–22�. For the simultaneous propagation
of N nonlinear waves, the corresponding governing equation
is the N-CNLS system. The Painlevé property, Lax pair, and
multisoliton solutions for the N-CNLS system have also been
investigated in Refs. �18,19,22�.

In an isotropic medium, the propagation of orthogonally
polarized optical waves is governed by the following CNLS
system �23–25�:

iq1z
+ q1tt

+ 2��q1�2 + 2�q2�2�q1 − 2q1
*q2

2 = 0,

iq2z
+ q2tt

+ 2��q2�2 + 2�q1�2�q2 − 2q2
*q1

2 = 0, �2�

where q1 and q2 are slowly varying envelopes of two inter-
acting optical modes, the variables z and t, respectively, cor-
respond to the normalized distance and time, and the asterisk
denotes the complex conjugate. Different from system �1�,
the ratio between the coefficients of the self-phase modula-
tion and cross-phase modulation is 1:2. The last terms of
system �2� represent the coherent coupling governing the en-
ergy exchange between two axes of the fiber �26�. The Pain-
levé analysis, Lax pair, and Hirota bilinear form have been
presented in Ref. �23�. Reference �27� has obtained the mul-
tisoliton solutions and discussed the soliton interaction be-
haviors by virtue of the Darboux transformation.

In this paper, we devote our attention to the simultaneous
propagation of N fields described by the following N-CNLS
system:*Corresponding author. Email address: gaoyt@public.bta.net.cn

PHYSICAL REVIEW E 77, 026605 �2008�

1539-3755/2008/77�2�/026605�10� ©2008 The American Physical Society026605-1

http://dx.doi.org/10.1103/PhysRevE.77.026605


iqjz
+ qjtt

+ 2��qj�2 + 2�
k=1

N

�qk�2�qj − 2�
k=1

N

qk
2q

j
* = 0 �3�

�j,k = 1,2, . . . ,N; k � j� ,

which is a generalization of system �2�. For N=4, Ref. �24�
has constructed the Lax pair and single soliton solution for
the simultaneous propagation of four fields.

Symbolic computation is a new branch of artificial intel-
ligence, which has been extensively used to deal with a large
amount of complicated and tedious algebraic calculations in
various fields of science and engineering �28�. With the help
of the computerized symbolic computation, we will carry out
the Painlevé singularity structure analysis to check the inte-
grability of this system in Sec. II. In Sec. III, with the
Ablowitz-Kaup-Newell-Segur �AKNS� scheme, we will de-
rive the Lax pair in the frame of the block matrices. Section
IV will be devoted to obtaining the bright one- and two-
soliton solutions of system �3� by means of the Hirota bilin-
ear method. In Sec. V, the multisoliton solutions of system
�3� for N=2 will be constructed by the linear superposition
of soliton solutions of two independent NLS equations. The
corresponding propagation dynamics and applications for
soliton pulses in nonlinear optical fibers will be considered.
Three significant conserved quantities, i.e., energy, momen-
tum and Hamiltonian, will be presented in Sec. VI. The last
section will be our conclusions.

II. PAINLEVÉ ANALYSIS OF SYSTEM (3) WITH
SYMBOLIC COMPUTATION

It is well known that the Painlevé singularity structure
analysis has been a systematic and effective algorithmic
method to identify the integrability of nonlinear evolution
equations �NLEEs� in nonlinear science �29,30�. According

to the Weiss-Tabor-Carnevale procedure �29�, a given NLEE
is said to have the Painlevé property when its solutions are
single valued about the noncharacteristic movable singular
manifold. In this section, based on this approach and the
simplified Kruskal ansatz �30,31�, we assume the solutions
of system �3� in a generalized Laurent series expansions

qj = �
k=0

�

ujk�z��−�j+k�z,t� ,

q
j
* = �

k=0

�

v jk�z��−�j+k�z,t� �j = 1,2, . . . ,N� ,

�4�

with ��z , t�= t+��z�, where ��z� is an arbitrary analytic
function and ujk�z�, v jk�z�, �uj0�z� ,v j0�z��0� are all analyti-
cal functions, in the neighborhood of a noncharacteristic
movable singularity manifold defined by ��z , t�=0, while � j

and � j are positive integers to be determined.
Determining the leading-order behavior, we introduce qj

	uj0�−�j and qj
*	v j0�−�j into system �3� and its complex

conjugate version and obtain

� j = � j = 1, uj0 = − v j0
�
j=1

N

v j0
2 �j = 1,2, . . . ,N� ,

�5�

from which we see that there are N arbitrary functions
v j0 �j=1,2 , . . . ,N�. For finding the resonances �namely, the
powers at which arbitrary functions can enter the Laurent
series�, we now substitute

qj = uj0�−1 + ujk�
−1+k, qj

* = v j0�−1 + v jk�
−1+k, �6�

into system �3� and its complex conjugate version, and
equate the coefficients of ��−3 , . . . ,�−3� to get

�
A

2�2v10
2 − B�
B2 0

4v10v20

B2 0
4v10v30

B2 ¯ 0
4v10vN0

B2

2�2v10
2 − B�
1

A 4v10v20 0 4v10v30 0 ¯ 4v10vN0 0

0
4v10v20

B2 A
2�2v20

2 − B�
B2 0

4v20v30

B2 ¯ 0
4v20vN0

B2

4v10v20 0
2�2v20

2 − B�
1

A 4v20v30 0 ¯ 4v20vN0 0

] ] ] ] ] ] � ] ]

0
4v10vN0

B2 0
4v20vN0

B2 0
4v30vN0

B2 ¯ A
2�2vN0

2 − B�
B2

4v10vN0 0 4v20vN0 0 4v30vN0 0 ¯

2�2vN0
2 − B�
1

A

� = 0, �7�
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with

A = �k − 2��k − 1��t
2 − 4, B = �

j=1

N

v j0
2 .

By setting the determinant to zero, the resonances are given
as

k = − 1, . . . ,− 1
N

, 0, . . . ,0
N

, 3, . . . ,3
N

, 4, . . . ,4
N

. �8�

The resonance at k=−1 naturally represents the arbitrariness
of the singular manifold ��z , t�, while

k = 0, . . . ,0

N

are associated with the arbitrariness of the functions v j0
�j=1,2 , . . . ,N� as seen in expression �5�. With the aid of
symbolic computation, the existence of sufficient number of
arbitrary functions at the resonance values

k = 3, . . . ,3

N

k = 4, . . . ,4
N

and

can be easily checked by substituting the full Laurent expan-
sions �4� into system �3� and analyzing the equations by
collecting the coefficients of different powers of �. Thus far,
it has been shown that the solutions of system �3� admit the
required number of arbitrary functions without the introduc-
tion of any movable critical manifold. Therefore, we can
conclude that system �3� possesses the Painlevé property. It
is interesting to note that all resonance k=−1,0 ,3 ,4 are all
the N multiple roots, but the simple roots k=−1,0 ,3 ,4 are
precisely those of the standard NLS equation. In Ref. �23�,
by making use of the Painlevé singularity structure analysis,
the authors have found that all resonances of system �2� are
the double poles, i.e., k=−1,−1,0 ,0 ,3 ,3 ,4 ,4, which means
that 2-CNLS can be decoupled into two independent NLS
equations, and is also in conformity with the existence of
double −1 values in the resonances.

III. LAX PAIR OF SYSTEM (3)

An important feature of many integrable NLEEs is that
they can be thought of as the compatibility conditions for the
linear eigenvalue equations �Lax pair� having a spectral pa-
rameter �30�. The Lax pair plays an important role in obtain-
ing the solutions, integrable properties and the initial value
problem for a given integrable NLEE solved by use of the
inverse scattering transform method �30�. The AKNS scheme
provides a very systematic way to construct the Lax pair,
whose compatibility conditions yield many completely inte-
grable models of physical interest �32–34�. By means of such

a scheme, the Lax pair of system �3� can be constructed with
the following linear eigenvalue problem:

�t = U� = ��U0 + U1��, �z = V� = ��2V0 + �V1 + V2�� ,

�9�

with the block matrices U0 , U1 , V0 , V1 , V2 as

U0 = i�− I 0

0 I
�, U1 = � 0 Q

− Q† 0
� , �10�

V0 = 2i�− I 0

0 I
�, V1 = 2� 0 Q

− Q† 0
� ,

V2 = i�Q · Q† Qt

Qt
† − Q† · Q

� , �11�

where � is a 2N-dimensional vector function, I is an unit
matrix, � is the spectral parameter independent of z and t, Q
is a square matrix, and the sword denotes the Hermitian con-
jugate. The compatibility condition for Eq. �9�, i.e., the zero-
curvature equation Uz−Vt+ �U ,V�=0, where the brackets
denote a commutator of two matrices, yields the following
matrix NLS equation:

iQz + Qtt + 2Q · Q† · Q = 0, �12�

from which families of CNLS systems are able to be derived
according to different forms of Q. For the special case Q
=Q1=q, Eq. �12� leads to the standard NLS equation

iqz + qtt + 2�q�2q = 0. �13�

If Q is chosen as the following forms:

Q2 = � q1 q2

− q2 q1
� , �14�

Q3 =�
q1 q2 q3 0

− q2 q1 0 q3

− q3 0 q1 − q2

0 − q3 q2 q1

 , �15�
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Q4 =�
q1 q2 0 0 q3 0 q4 0

− q2 q1 0 0 0 q3 0 q4

0 0 q1 q2 − q4 0 q3 0

0 0 − q2 q1 0 − q4 0 q3

− q3 0 q4 0 q1 − q2 0 0

0 − q3 0 q4 q2 q1 0 0

− q4 0 − q3 0 0 0 q1 − q2

0 − q4 0 − q3 0 0 q2 q1

 , �16�

the 2-CNLS, 3-CNLS, and 4-CNLS systems are obtained by
substituting expressions �14�–�16� into Eq. �12�, respectively.
In what follows, we give the general expression of QN as a
2N−1�2N−1 block matrix

QN = � Q1 Q2

Q3 Q4
� , �17�

where Q j �j=1,2 ,3 ,4� are all 2N−2�2N−2 square-block ma-
trices, Q1 is a block diagonal matrix, while Q3=−Q2

T, Q4
=Q1

T �T denotes the transpose of the matrix�. Q1 and Q2 are
given by

Q1 =�
A1

A1 0

�

0 A1

A1

 , Q2 = � B1 B2

B3 B4
� ,

�18�

where Q2 has the same identities as QN, i.e., B j are all
square-block matrices, B3=−B2

T, B4=B1
T, while B1 and B2 are

expressible in the form

B1 =�
A2

A2 0

�

0 A2

 ,

B2 =�
A3 O ¯ AN−1 AN

O A3 ¯ − AN AN−1

] ] � ] ]

− AN−1 AN ¯ A3 O

− AN − AN−1 ¯ O A3

 , �19�

A1 = � q1 q2

− q2 q1
�, O = �0 0

0 0
� ,

A j = �qj+1 0

0 qj+1
� �j = 2,3, . . . ,N� . �20�

It is easy to verify that system �3� can be derived from Eq.
�12� with the substitution of expressions �17�–�20�.

IV. SOLITON SOLUTIONS OF SYSTEM (3) WITH
THE HIROTA BILINEAR METHOD

In this section, using the Hirota bilinear method, we will
construct the exact bright one- and two-soliton solutions of
system �3�.

By the bilinear transformation qj =g�j� / f , system �3� can
be transformed into the bilinear form

�Dz − iDt
2��g�j� · f� = 0, �21�

Dt
2�f · f� = 2��g�j��2 + 2�

k=1

N

�g�k��2� − 2
g�j�*

g�j� �
k=1

N

g�k�2

�j,k = 1,2, . . . ,N; k � j� , �22�

where D is the well-known Hirota bilinear operator �35�

Dz
mDt

ng · f = ���z − �z��
m��t − �t��

ng�z,t�f�z�,t���z�=z,t�=t.

�23�

The soliton solutions of system �3� can be constructed by
expanding the functions g�j� and f as power series of small
parameter 	

g�j� = 	g1
�j� + 	3g3

�j� + 	5g5
�j� + ¯ ,

f = 1 + 	2f2 + 	4f4 + ¯ �j = 1,2, . . . ,N� . �24�

A. Bright one-soliton solution

Through the terminated expansion g�j�=	g1
�j�, f =1+	2f2,

the bright one-soliton solution can be obtained with solving
Eqs. �21� and �22�

qj =
�1

�j�e
1

1 + e
1+
1
*+�

=
�1

�j�

2
e−��/2� sech�Re�
1� +

�

2
�ei Im�
1�,

�25�
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where e�=� j=1
N ��1

�j��2 / �k1+k1
*�, 
1=k1t+ ik1

2z, k1 is an arbi-
trary complex constant, and �1

�j� are all arbitrary real con-
stants. Fig. 1 shows the intensity plots of bright one-soliton
solution for the 3–CNLS equations.

B. Bright two-soliton solution

Expanding g�j�=	g1
�j�+	3g3

�j�, f =1+	2f2+	4f4, we can get
the bright two-soliton solution from Eqs. �21� and �22�

qj =
�1

�j�e
1 + �2
�j�e
2 + e
1+
1

*+
2+�1j + e
1+
2+
2
*+�2j

1 + e
1+
1
*+1 + e
1+
2

*+0 + e
1
*+
2+0

*
+ e
2+
2

*+2 + e
1+
1
*+
2+
2

*+3
, �26�

with

e�1j =
�2�2

�j��k1 − k2�2�

�k1 + k1
*�2�k2 + k1

*�2 , e�2j =
��2

�j��k1 − k2�2�

�k1 + k2
*�2�k2 + k2

*�2 ,

e0 =
��

�k2
* + k1�2 , �27�

e1 =
�2�

�k1 + k1
*�2 , e2 =

�

�k2 + k2
*�2 ,

e3 =
�2�k1 − k2�4�2

�k1 + k1
*�2�k2 + k1

*�4�k2 + k2
*�2 , �28�


1 = k1t + ik1
2z, 
2 = k2t + ik2

2z ,

� = �
m=1

N

��2
�m��2, �1

�j� = ��2
�j�, �29�

where k1 and k2 are two arbitrary complex constants, while �
and �2

�j� are all arbitrary real constants. Fig. 2 displays the
elastic collision of two bright soliton for the 3–CNLS equa-
tions.2�.

V. OPTICAL SOLITON SOLUTIONS AND ITS
APPLICATIONS OF SYSTEM (3) FOR N=2

In the above section, the soliton collisions taking place in
respective component are all elastic because of the following
relationship:

�1
�1�

�2
�1� =

�1
�2�

�2
�2� = ¯ =

�1
�N�

�2
�N� = � . �30�

In this section, we will turn our attention to the 2-CNLS
equations of system �3�. In Ref. �23�, it has been noted that

through substituting �1=q1+ iq2 and �2=q1− iq2 into the
two independent NLS equations

i� jz
+ � jtt

+ 2�� j�2� j = 0 �j = 1,2� , �31�

system �2� can be recovered, which means that system �2�
can be decoupled into two independent NLS equations, and
the solution of system �2� is available from the linear super-
position of the solutions of these two independent NLS
equaitons. In this section, with such a valid superposition
principle, i.e., q1= 1

2 ��1+�2� and q2=−i 1
2 ��1−�2�, we will

obtain the bright soliton solutions of system �2� by the bright
soliton solutions of Eq. �31�.

Substituting the dependent variable transformations � j
=Gj /Fj �j=1,2� into Eq. �31�, we can get the bilinear forms
�35�

�iDz + Dt
2��Gj · Fj� = 0, Dt

2�Fj · Fj� = 2GjGj
* �j = 1,2� .

�32�

After symbolic computation on Eq. �32�, the one- and two-
soliton solutions of Eq. �31� are presented as follows.

1. One-soliton solution

� j
�1� =

� j

2
e−��j/2� sech�kjR�t − � j�z���ei�j�z,t� �j = 1,2� ,

�33�

where e�j =
�� j�2

�kj+kj
*�2 , kj =kjR+kjIi, � j�z�=kjIz−� j /2kjR, � j�z , t�

=kjIt+ �kjR
2 −kjI

2 �z, and � j are arbitrary complex parameters,
while the subscripts R and I on kj represent the real and
imaginary parts.

2. Two-soliton solution

� j
�2� =

� je
�j + � je

�j + e�j+�j
*+�j+�j + e�j+�j+�j

*+�j

1 + e�j+�j
*+�j + e�j+�j

*+�j + e�j
*+�j+�j

*
+ e�j+�j

*+�j + cje
�j+�j

*+�j+�j
* �j = 1,2� , �34�
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where

� j = kjt + ikj
2z ,

� j = ljt + ilj
2z ,

cj =
�� j�2�� j�2�kj−lj�2�kj*−lj*�2

�kj+kj*�2�lj+lj*�2�kj+lj*�2�lj+kj*�2 ,

e�j =
� j� j*

�kj+lj*�2 ,

e�j =
� j�� j�2�kj−lj�2

�kj+kj*�2�lj+kj*�2 ,

e�j =
� j�� j�2�kj−lj�2

�lj+lj*�2�kj+lj*�2 ,

e�j =
�� j�2

�lj+lj*�2 ,

while � j , � j , kj , lj are all arbitrary complex parameters.
Thus, the bright two-soliton solutions of system �2� can be

straightforwardly gained from the linear superposition of two
single solitons

q1 =
1

2
��1

�1� + �2
�1��, q2 = −

1

2
i��1

�1� − �2
�1�� . �35�

The existence of such a superposition principle also provides
many useful insight into the structures of soliton solutions
and interaction between solitons. The effectiveness of this
approach has been demonstrated in Refs. �36–38�, where the
behavior and interaction between solitons have been consid-
ered with the two-soliton solution as a sum of two single
solitons. It can be seen from expression �33� and solution

�35� that sech�kjR�t−� j�z��� represents the shape of the bright
soliton, the soliton amplitude is 1

2 �kjR�, the width of the soli-
ton is 1

�kjR� , � j�z , t� is the soliton phase, and � j�z� is the soliton
position. The distance between two solitons is �d= ��1�z�
−�2�z�� which is an important parameter to suppress the over-
lap phenomenon between two solitons. Figure 3 shows the
stable propagation of a single soliton pulse in each compo-
nent, when solution �35� become a single soliton. In the op-
tical communication system, in order to increase the
information-carrying capacity of the fiber, the multisoliton
pulses are often launched. However, the mutual interaction
will will bring about the overlap between neighboring soli-
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FIG. 1. �Color online� Intensity plots of one-soliton solution
�25� for the case N=3. The relevant parameters are chosen as k1

=1+ i, �1
�1�=1, �1

�2�=1.5, and �1
�3�=2.
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FIG. 2. �Color online� Elastic collision of two solitons expressed
by solution �26� for the case N=3. The relevant parameters are
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�1�=�2
�1�=1, �1

�2�=�2
�2�=2, and �1

�3�

=�2
�3�=1.5.

�2

0

2
t

0

20

40
60

80

z

0.5

1.5

2.5

�q1�

�2

0

2
t

�2

0

2
t

0

20

40
60

80

z

0.5

1.5

2.5

�q2�

�2

0

2
t

(a)

(b)

FIG. 3. Stable propagation of bright soliton pulse via solutions
�35� with k1=−2, �1=2, k2=1, and �2=0.

ZHANG et al. PHYSICAL REVIEW E 77, 026605 �2008�

026605-6



tons. Many efforts have been devoted to controlling the mu-
tual interaction so as to improve the transmission rate. Figure
4 displays that two soliton pulses with equal amplitude
propagate independently retaining the invariant separation
distance �d=13.2018. In comparison, Fig. 5 provides two
cases of the overlap of two soliton pulses with the same
amplitude or different amplitudes. The above results show
that the overlap between two soliton pulses can be controlled
by adjusting the parameter �d appropriately.

In optical communication systems, the all-optical switch-
ing �39�, construction of logic gates �21,22,40�, information
transformation �41�, as well as optical computing �3,16,25�

are based on the context of the interaction of vector solitons.
Due to the multicomponent structure of CNLS system, the
vector solitons can exhibit richer propagation dynamics and
collision properties than one-component counterparts. There-
fore, it is of great interest in studies for the interaction of
vector solitons both in theory and experiment �8,42–47�. It
has been shown that the bright vector solitons undergo the
fascinating intensity shape-changing collisions due to inten-
sity redistributions in two components �20,22�. In the colli-
sion process, the intensity of the bright vector solitons can be
enhanced or suppressed, and even completely annihilated. In
addition, it has been experimentally demonstrated that the
energy-exchange interaction of vector solitons is possible
�49,48,50�, and how information can pass from one collision
to the next when the optical pulses act as the information
carries in two component fields �41�. In the following, Figs.
6–9 display the intensity profiles of bright vector soliton so-
lutions obtained by the linear superposition of the single soli-
ton and two-soliton solutions. In Figs. 6 and 7, the intensities
of bright solitons are invariant in the propagation process.
However, in Figs. 8 and 9, if the intensity of soliton gets
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enhanced �suppressed� in one component, while in the other
component the corresponding soliton intensity is suppressed
�enhanced�. In the particular case, the intensity can be com-
pletely annihilated.

VI. CONSERVED QUANTITIES OF SYSTEMS (3)

In Figs. 8 and 9, although the intensity redistribution for
the solitons between two component fields, the total energy
of the system is conserved. In this section, the total energy,
momentum and Hamiltonian of system �3� are presented.
These quantities are useful for analytical investigation of the
stability for the soliton pulses in optical communications
�51,52�.

Multiplying the jth equation of system �3� and its com-
plex conjugate system by qj

* and qj, respectively, and imple-
menting the subtraction operation for those resultant equa-
tions yield the energy conservation law for the entire bright
vector solitons of systems �3�

i
�

�z
��

j=1

N

�qj�2� =
�

�t
��

j=1

N

qjqjt
* − �

j=1

N

qj
*qjt� . �36�

By virtue of the vanishing boundary conditions �qj�t→��

→0, the total energy of system �3� is given by

P = �
−�

+�

�
j=1

N

�qj�2dt . �37�

Proceeding further as above, we can write other two con-
served equations as

i
�

�z��
j=1

N

�q
j
*qjt

− qjqjt
*��

=
�

�t�2�
j=1

N

��qjt
�2 − �qj�4� − �

j=1

N

�qjtt
q

j
* + qjqjtt

* �

− 8 �
1�k�m�N

�qk�2�qm�2 + 2�
j=1

N

qj
2 �

k=1

N�k�j�

q
k
*2� , �38�

�

�t��
j=1

N

�qjt
qjz

* + qjt
*qjz

��
=

�

�z��
j=1

N

��qjt
�2 − �qj�4� − 4 �

1�k�m�N

�qk�2�qm�2

+ �
j=1

N

qj
2 �

k=1

N�k�j�

qk
*2� , �39�

from which the total momentum and Hamiltonian of system
�3� are, respectively, given by

M = i�
−�

+�

�
j=1

N

�q
j
*qjt

− qjqjt
*�dt , �40�

H = �
−�

+� ��
j=1

N

��qjt
�2 − �qj�4� − 4 �

1�k�m�N

�qk�2�qm�2

+ �
j=1

N

qj
2 �

k=1

N�k�j�

q
k
*2�dt . �41�

VII. CONCLUSIONS

In this paper, we have investigated an N-CNLS system
with the self-phase modulation, cross-phase modulation, and
energy exchange terms, which can be used to describe the
simultaneous propagation of N fields in an isotropic medium.
Performing the Painlevé singularity structure analysis, we
have identified that such a system possesses the Painlevé
property. Based on the AKNS scheme, the linear eigenvalue
problem associated with this N-CNLS system has also been
constructed in the frame of the block matrices. Furthermore,
we have constructed the bright one- and two-soliton solu-
tions of this system by employing the Hirota method. When
N=2, it has been shown that the multisoliton solutions can
be straightforwardly available by the linear superposition of
the soliton solutions of two independent scalar NLS equa-
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k2=1, and �2=2.
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tions. According to the obtained soliton solutions and graphi-
cal analysis, we have discussed the following applications of
the soliton pulses propagation in nonlinear optical fibers: �1�
the overlap phenomenon between two closely spaced soliton
pulses and �2� intensity preservation and redistribution be-
tween two components. Finally, three significant conserved
quantities have been given.
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